
 

Figure 1. With Thumprint, groups of users learn a single, 
shared secret knock that they enter on a surface instru-
mented with (or containing) an accelerometer and micro-
phone (here, a smartphone) in order to authenticate. 
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ABSTRACT 
Small, local groups who share protected resources (e.g., 
families, work teams, student organizations) have unmet 
authentication needs. For these groups, existing authentica-
tion strategies either create unnecessary social divisions 
(e.g., biometrics), do not identify individuals (e.g., shared 
passwords), do not equitably distribute security responsibil-
ity (e.g., individual passwords), or make it difficult to share 
or revoke access (e.g., physical keys). To explore an alter-
native, we designed Thumprint: inclusive group authentica-
tion with a shared secret knock. All group members share 
one secret knock, but individual expressions of the secret 
are discernible. We evaluated the usability and security of 
our concept through two user studies with 30 participants. 
Our results suggest that (1) individuals who enter the same 
shared thumprint are distinguishable from one another, (2) 
that people can enter thumprints consistently over time, and 
(3) that thumprints are resilient to casual adversaries. 
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INTRODUCTION 
Authentication is important for any secure system, but is 
typically designed for individuals with privately owned 
resources and a strong desire to protect them (e.g., bank 
statements, emails) [6,31]. This focus, while important, has 
resulted in authentication tools (e.g., PINs, biometrics) that 
are often inappropriate for a large spectrum of small, local 
groups who have relaxed security needs and collectively 
share accounts, devices and/or spaces, for example, families 
who share tablets with children. Shared passwords and 
PINs do not allow for parental controls, whereas requiring 

individual passwords for each family member is unwieldy 
and often subverted [23,26].  

Another example is interest-based organizations that share 
equipment (e.g., a tennis club). Each group member should 
have access to this shared equipment, but group members 
often change so using a shared password or key can make it 
difficult to revoke access from old members [1]. Converse-
ly, use of individual secrets to access group resources can 
be socially inappropriate [8,13] or rude [25]. Similar 
situations arise with, for example, employees who share 
kitchenettes, waitstaff who share access to employee-only 
areas, and roommates who share a Netflix account.  

While these group-owned resources should only be accessi-
ble by members, individuals in the group trust each other 
and only need enough security to discourage casual outsid-
ers [17,26]. Thus, these diverse groups could benefit from a 
new form of socially-inclusive authentication that provides 
reasonable outsider rejection and can identify group mem-
bers without individual secrets. 

To that end, we introduce Thumprint: group authentication 
through shared secret knocks. Secret knocks were famously 
used by Prohibition-era speakeasies to authenticate prospec-
tive bar patrons when sale of alcohol was prohibited in the 
U.S. [22]. As they are secrets shared through trusted social 
channels, they not only authenticate, but also promote 
group cohesion [34]. Our idea with Thumprint (a portman-
teau of “thump” and “print”) was to leverage advancements 
in sensing to realize a secret knock authenticator.  
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In brief, Thumprint authenticates groups based on group 
members’ expression of a shared, three-second knock on a 
surface instrumented with (or containing) an accelerometer 
and microphone (see Figure 1). As the secret knock is 
shared, group members need not maintain their own indi-
vidual secrets. However, because individual expressions of 
the knock are variable, Thumprint can still identify individ-
uals. Current members can safely share the secret with new 
members, but as individuals are identifiable, previous 
members can have their access revoked or limited. Notably, 
Thumprint is not designed to provide perfect security—it is 
designed to be lightweight and inclusive. 

To evaluate the usability and security of Thumprint, we ran 
two user studies. Through these studies, we found that (1) 
different people who enter the same thumprint can be 
recognized, (2) people can consistently enter their 
thumprints over time-separated sessions, and (3) thumprints 
are reasonably secure against casual, motivated adversaries. 

Concretely, we offer the following broad contributions to 
HCI and usable security: (1) We present an early explora-
tion into the design of a “social” cybersecurity system 
motivated by growing empirical evidence that social factors 
strongly affect the usability and adoption of security sys-
tems [8–10]; (2) We introduce the concept of “socially-
inclusive” authentication for groups who share collectively-
owned resources, and, in so doing, synthesize design 
considerations for these groups that are not covered by 
existing taxonomies of authentication research [3,18]. 

BACKGROUND AND RELATED WORK 
Apart from having relaxed outsider rejection needs, we 
identified three other design dimensions for local group 
authentication from a survey of background literature. 

The first is inclusivity with identifiability. Inclusivity is 
broad, but we define it as reducing the need for individual 
secrets when authenticating to common group resources. 
Indeed, requiring individual secrets (e.g., private pass-
words) to access shared resources is cumbersome and can 
lead to non-compliance (e.g., sharing passwords) [26]. 
Individual secrets can also have social consequences: not 
sharing these secrets can be rude [33] or otherwise create 
social friction between people [5,8,21,32]. 

Consider the case of a spouse needing her partner to check 
a shared calendar on her smartphone: What should she do if 
the phone is password protected? If the choice is between 
losing social capital with a loved one or sharing a password, 
people often opt for the latter [13,34], and, in so doing, 
break the security assumptions of the system. 

Still, social group structures vary widely [35], and some 
group structures may require access control at the individu-
al level. Thus, inclusivity should ideally come with identifi-
ability to allow for audit logs, personalized functionalities, 
and tiered access to resources. For example, having one 
shared family PIN prevents individual family members 

from creating personalized profiles and precludes the ability 
for parents to have privileged access [5,11].  

Another need is proportionate distribution of security 
responsibility. Responsibility for the well-being of the 
group should be appropriately distributed across members 
[20,24], as individuals may be resistant to weighty security 
solutions that require a large personal investment of time or 
effort. Accordingly, authentication should be sensibly 
simple for individual group members. Otherwise, individu-
als who are less knowledgeable or motivated about security 
could compromise the whole group’s security (e.g., by 
creating a weak password to access group resources). 

One example of where proportionate security responsibility 
is employed is when nursing staff must use authentication 
to access hospital computing systems. Nurses often have 
urgent needs and cannot each be expected to remember 
long, complex passwords, even if hospital IT has a different 
perspective. Doing so sometimes results in nursing staff 
writing down passwords for sensitive hospital equipment 
right on the apparatus [23]. 

Finally, there are a number of small, local groups that are 
built off of a common-identity (e.g., a common interest in 
tennis). Typically, groups like these have a lot of churn: i.e., 
they often gain new members and lose old members [28]. 
For these groups, it should be easy to share access with new 
members and revoke access from old members. Student 
organizations that have members rotating every semester, 
for example, need a simple and reliable way to revoke and 
grant access to shared equipment closets.  

Few existing security solutions support these needs as core 
functionality. Indeed, in a longitudinal field study of the 
access control habits of a local group who shared a work 
space, Bauer et al. found that existing strategies for authen-
tication and access control (i.e., sharing physical keys) 
could not support the group’s ideal policies [1].  

However, while there has been little work on creating better 
local group authenticators, there has been some promising 
research that explores the problem domain. Toomim et al. 
introduced a photo access control mechanism where the 
correct audience should be able to answer a question based 
on shared knowledge [33]. Gilbert created a social encryp-
tion tool, OpenBook, that obfuscates messages in a way that 
can only be reconstructed by the shared social context 
between sender and receiver [14]. And, Egelman et al. and 
Brush introduced the “Family Account” [5,11]—a shared 
account for all family members. Still, Family Accounts are 
for access control, not authentication. 

Our key idea is to use sensable, behavioral interactions as 
shared group secrets that have varying individual expres-
sions. For instance, accelerometers in mobile devices have 
been used for detecting a wide range of gestures, activities 
and hand postures [7,15]. There has been increasing interest 
in using these forms of sensable user behavior for authenti-
cation. One notable example is the use of keystroke dynam-



ics (i.e., the rhythm with which people type) for authentica-
tion [19,27]. With TapSongs, Wobbrock extended this 
approach to intentional behaviors in the form of rhythmic 
up-down taps on a binary sensor to match a known jingle 
timing model [36]. Lin, Ashbrook and White used a similar 
approach to pair I/O constrained devices through entry of a 
secret “tapword” on both devices [25]. In all of these cases, 
outsider rejection was not perfect (~20% failure rates), but 
insider acceptance was promising. 

These approaches, while inspirational, were not designed to 
be inclusive nor were they meant for groups. With 
Thumprint, we extend these advances in sensing intentional 
behaviors for group authentication. 

THUMPRINT  
Design Inspiration  
There are many analogues in the offline world that illustrate 
the use of shared secrets for group authentication [2]. There 
is the famous biblical example of correctly pronouncing the 
word “shibboleth” that the Gileadites used to identify the 
invading Ephraimites who could not pronounce the “sh” 
sound [37]. Other examples include secret handshakes (e.g., 
the use of selective pressure in handshakes) and code 
phrases (e.g., saying the words “open sesame” to gain 
access to a secret lair) [2]. In all of these cases, the shared 
secret not only authenticates, but is inclusive and reinforces 
group cohesion [34]. As previously mentioned, Thumprint 
is inspired by the secret knocks used at speakeasies [22].  

Accordingly, Thumprint authenticates local groups with a 
secret knock consisting of a shared secret token and pattern. 
The token is typically just a finger or a knuckle. However, 
any small, solid object can be used (e.g., a pen or coin). The 
pattern can be any sequence of knocks within a three-
second period. Authentication occurs by entering the knock 
on a sensed surface. Furthermore, as each person has a 
different mechanical expression of the knock, Thumprint 
can also identify individuals. 

System Overview  
Figure 2 shows a high-level description of how Thumprint 
works. To operate, Thumprint requires two components: a 
surface instrumented with an accelerometer and micro-
phone (or a device already containing these sensors, such as 
a smartphone), and an endpoint to regulate access.  

The sensed surface can take on many forms—e.g., a tablet 
touchscreen, a door, or tabletop. As a proof-of-concept 
implementation, we used an Android smartphone as our 
sensed surface. Meanwhile, the authentication end-point 
can be anything that regulates access control, such as a 
tablet or an electronic smart lock.  

To use Thumprint, a group of at least two members must 
register themselves by entering the shared secret knock. To 
register, each member enters the secret knock on the sensed 
surface five to ten times. Thumprint records three-seconds 
of accelerometer and microphone data from each of the 
registration attempts, extracts a set of time- and frequency-
domain features from those sensor streams, and stores each 
feature vector labeled with the individual's ID as training 
data. We selected a three-second duration to allow for 
sufficient variation in knock expression. Thumprint then 
processes these training data to “learn” both the shared 
secret knock and each individual’s expression of the knock.  

To later authenticate, an individual should reproduce the 
secret knock roughly in the same manner in which she 
registered. The system extracts an unlabeled feature vector 
from the authentication attempt and compares it against 
training data. If the unlabeled feature vector is similar 
enough to the group thumprint, it is authenticated as the 
member whose training data is most similar. Moreover, 
Thumprint computes a similarity score for each group 
member—so, depending on the security needs of the group, 
it is possible to provide tiered access control so that a knock 
is only authenticated if its similarity score is sufficiently 
high. If the score is too low, it is possible to provide lower 
tier access, or prompt the user to repeat the knock. 

Training Pipeline 
Once participants have provided a set of training data 
during the registration process, the key question is how can 
we use this training data to later authenticate group mem-
bers? More formally, if we have an unlabeled authentica-
tion attempt, 𝑢, we must determine determine whether or 
not to authenticate 𝑢 and, if so, which group member is 
most likely to have produced 𝑢. 

One approach is to use a one-class classifier, but these 
typically require a large amount of training data—dozens, if 
not hundreds of training points per group member. Instead, 

 
Figure 2. With Thumprint, users enter secret knocks on an instrumented sensor surface (A) from which a variety of time 
and frequency domain features are extracted (B). These readings are projected onto a reduced feature space, where each 
authentication attempt is compared against previously learned thumprint expressions from group members (C). If a match, 
Thumprint will provide access by regulating an end-point such as an electronic lock (D). 



to make accurate decisions with far fewer training data, we 
use a form of template matching: i.e., we compare 𝑢 to the 
set of templates, 𝑇, that are constructed during training to 
represent individual expressions of the shared secret 
knocks. If the distance between 𝑢 and any 𝑡 ∈ 𝑇 is suffi-
ciently low, then we authenticate 𝑢 as coming from the user 
who produced 𝑡. Otherwise, we reject 𝑢 as coming from an 
outsider. In brief, this process requires three implementa-
tion steps: feature extraction, feature processing, and 
template construction. 

Feature Extraction 
We extracted a set of features from each of the input 
acceleration and acoustic signals that users entered during 
registration. Features were extracted from the raw time-
domain PCM values, as well as a Daubechies D4 wavelet 
and Fourier transformation (FFT) of the signals. For the 
raw-time domain and FFTs, we extracted features for each 
one-second segment of the signal to better preserve the 
temporal variance of the thumprints across the three-second 
window (i.e., to characterize thumprints that may be inten-
tionally non-rhythmic and irregular). This was unnecessary 
for the wavelet transformation, as wavelet coefficients 
capture temporal variation by design [4]. Finally, for the 
acoustic signal, we also extracted features from the mel-
frequency cepstral coefficients (MFCCs) computed for each 
25 millisecond time-window of the signal. See Table 1 for 
an overview of features used. 

At the end of the feature extraction process, we have a 
matrix, 𝐹 ∈ ℝ!"#, where m is the number of training 
attempts in the system and n is the number of features that 
have been extracted. Each row of this matrix represents the 
features extracted for a particular training attempt. We also 
have a class vector, 𝑦 ∈ ℤ!, that represents which partici-
pant produced which row of F.  

Feature Processing 
Next, we employ a number of supervised pre-processing 
techniques on F. First, we use correlation-based feature 
subset selection (CFS) [16] to reduce the feature space to a 
parsimonious subset that distinguishes group members. The 
reduced feature space is reduced to at most one feature per 
row of training data to mitigate overfitting. We then discre-

tize the feature space using Fayyad-Irani discretization 
[12]—a technique to bin continuous variables into discre-
tized intervals that minimize the entropy of known class 
values in each bin. Supervised discretization can enhance 
predictive performance in many cases [12]. Intuitively, we 
discretize the feature space so that our template matching 
algorithm is less sensitive to micro-fluctuations in raw 
feature values. At the end of the feature selection and 
discretization process, we have a reduced matrix, 
𝐴 ∈ ℤ!"# = 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒(𝐶𝐹𝑆 𝐹, 𝑦 ), where 𝑘 ≤ 𝑚 is the 
number of features in the reduced feature space.  

Template Construction  
Following feature selection and discretization, we need to 
deconstruct the training matrix, 𝐴, into a set of known 
templates, 𝑇. The two most straightforward approaches are: 
(1) create a single template for each user by averaging all of 
their training attempts; and, (2) create a distinct template for 
each training attempt. However, both are suboptimal. The 
first approach fails to acknowledge that individuals might 
have multiple expressions of the shared secret knock—for 
example, one might sometimes enter the knock with more 
force, or other times at a slower pace. If all of these differ-
ent expressions are averaged, then the average will look 
different than any of the individual expressions. The second 
approach fails to learn common patterns across training 
attempts and reduces security by expanding the surface area 
in the feature space that represents the group shared secret. 
Thus, a single stray training attempt can compromise the 
security of the group by expanding the acceptable definition 
of the group’s shared secret.  

Instead, we take a middle-ground approach by clustering 
together related training attempts into distinct templates. 
With this compromise approach, we can detect multiple 
distinct expressions of the secret knock within users, but 
still minimize the surface area that represents the group 
shared secret in feature space. To do so, we run a k-means 
clustering algorithm on the training data for each individual 
group member and automatically determine the number of 
clusters that are appropriate using the average silhouette 
width method [30]. At the end of this process, we have a set 
of templates, 𝑇, that each contain a subset of the training 
attempts derived from one registered group member. 

Signal Trans-
formation 

Applicable 
sensor streams 

Signal parti-
tioning 

Extracted 
features 

 

Time-domain Acceleration & 
Acoustic 

Whole & One-
second windows 

Mean, mean absolute value, std. dev., max, min, RMS, zero-crossings, total 
energy, 2nd order average, third order average, average amplitude change. 

Wavelets (D4) Acceleration & 
Acoustic Whole Total power, max power, power bands, mean absolute coefficient value per 

band, coefficient standard deviation per band. 

Fourier Acceleration & 
Acoustic 

One-second 
windows 

Dominant frequency, spectral centroid, spectral rolloff, spectral crest factor, 
spectral flatness, lower 1kHz bins. 

MFCCs Acoustic 25ms windows For each of the 12 coefficients, over all 25 ms windows: mean value, std. 
dev., mean first order-change, mean second-order change. 

Table 1. Features extracted for every thumprint, drawn from recommendations in prior work in sensing techniques.  
In total, 1020 features are extracted, though the feature space is dramatically reduced in later steps to avoid overfitting. 



Authentication  
Once training is complete, making an authentication deci-
sion on an unlabeled attempt, 𝑢, is a matter of finding the 
cluster(s) closest to 𝑢 and then thresholding on the distance 
between 𝑢 and the closest cluster centroid: 

min
!

 𝑑 𝑢, 𝑖 =
(

|𝑢 − 𝑡!"|
𝑘 )!

𝑇!
 

where 𝑇! represents the 𝑖th cluster and 𝑡!" represents the 𝑗th 
training vector in 𝑇!, |𝑇!| represents the size of 𝑇!, and 𝑘 
represents the size of the feature space after feature reduc-
tion. In practice, the value of 𝑑 𝑢, 𝑖  should typically fall 
within a range of 0 to 1 for any reasonably close attempt. 
Lower 𝑑 𝑢, 𝑖  suggests a closer match between 𝑢 and 𝑇! so 
in the simplest case of identification without authentication, 
we can identify 𝑢 as coming from the member who pro-
duced the cluster that minimizes min! 𝑑 𝑢, 𝑖 . To add 
authentication, we can introduce a threshold ℎ. If 
𝑑 𝑢, 𝑖 ≤ ℎ, then we authenticate; otherwise, we reject. 
Figure 3 visually illustrates the process.  

One potential concern is drift—or the idea that individuals 
might gradually change their expression of the secret knock 
over time. We handle drift by incrementally updating our 
training model as new training data is available (e.g., as a 
group member successfully authenticates over time) and by 
increasing the weight of more recent training attempts. 

STUDY 1: FEASIBILITY EVALUATION  
To evaluate the feasibility of our Thumprint concept, we 
ran an initial lab study with 15 participants ranging in age 
from 18-55 years old (mean age 26, eight females). Our 
goal with this feasibility evaluation was to answer the 
questions: Given a group of pre-registered users who all 
share a thumprint and a set of un-registered adversaries who 
know the group’s shared thumprint, (i) how easily can 
outsiders impersonate group members? (ii) how often are 

group members confused as outsiders? And, (iii) how often 
are group members are confused for one another?  

Procedure  
To answer these questions, we ran an hour-long lab study. 
Consenting participants proceeded through two flows: a 
flow in which they entered pre-selected thumprints, and a 
flow in which we had them create their own unique 
thumprints. Participants entered their thumprints on a 
Nexus 5 Android phone running our custom software. For 
each thumprint, our application recorded three-seconds of 
accelerometer data sampled at 2kHz and three-seconds of 
microphone data sampled at 44.1 kHz. 

In the first flow, we selected 10 example objects that 
spanned a variety of materials: a wooden letter opener, a 
rubber eraser and fridge magnet, a plastic eye drop bottle, 
pen and chapstick, a metal Swiss army knife and watch, a 
leather wallet, and the participant’s knuckle. Participants 
were instructed to hold the phone comfortably in their non-
dominant hand. Then, for each of the 10 thumprints, partic-
ipants held the object in their dominant hand (or used the 
knuckle of their dominant hand) and knocked repeatedly on 
the center of the screen for three seconds. They repeated the 
entry of each thumprint 10 times in total.  

After completing this flow, participants were allowed to 
create their own custom thumprints. Participants selected 
four tokens from the 10 objects provided and then had to 
develop their own unique knock for each of these tokens. 
Thus, participants could knock using any part of an object, 
anywhere on the screen and in any pattern. A researcher 
demonstrated these options to participants prior to start of 
this flow. Participants again had to repeat each of their four 
unique thumprints ten times each. We video-recorded 
participants entering their unique thumprints so that we 
could later use these recordings to simulate shoulder surfing 
adversaries. Data from this flow was primarily used as raw 
material for our second study. 

 
Figure 3. To authenticate, an unlabeled feature vector is 
transformed into the reduced feature space and then its 
distance to nearby training clusters is calculated. In this 
case, the unlabeled attempt would not be authenticated 
because it is too far from candidate clusters. 

 

 
Figure 4. Screenshots of the app in which participants 

entered preset (left) and custom (right) thumprints. 



To improve data collection, the study interface provided a 
progress bar to inform participants of their three-second 
time limit. For the first flow, the interface also contained a 
target at the center of the screen to assist participants with 
their aim. Figures 4 and 5 show screenshots of the process. 

With 15 participants, 14 thumprints, and 10 repetitions per 
thumprint, the study yielded 2100 thumprints consisting of 
three-second accelerometer and acoustic streams. We 
computed the aforementioned time and frequency domain 
features for each of these instances. 

Results  
To answer questions (i), (ii), and (iii), we needed to simu-
late data from small groups with a shared thumprint, as well 
as outsiders attempting to break those thumprints. For the 
10 pre-defined thumprints (first flow), simulating small 
groups and competent outsiders was straightforward. As 
each participant produced the same set of 10 thumprints, 
every participant could effectively be partnered with some 
number of other participants to simulate a small group, and 
every other participant could be a casual adversary.  

Thus, we randomly aggregated different subsets of 
𝑛 ∈ [3,5,10] participants to represent small groups of 
varying sizes. For training, we used a random sample of 
80% of each group member’s data, and kept a holdout set of 
20% for testing. Then, for each simple thumprint, we used 
data from the remaining 15 − 𝑛 participants to simulate a 
strong adversary who knew the group thumprint (as all 
users in the first flow entered the same thumprints).  

It is worth noting that we did not design Thumprint to be 
extremely strong against adversaries who exactly knew the 
group thumprint. Yet, our results exceeded expectations.  

Figure 6 shows the mean minimum feature vector differ-
ence, min! 𝑑 𝑢, 𝑖 , for authentication attempts by actual 
group members versus those of adversaries. From Figure 5, 

we can see a large and clear separation between the feature 
vector differences of authentic attempts (d=0.32) from 
adversarial attempts (d=1.06). In Figure 7, we plot the 
acceptance rate of these attempts as a function of a configu-
rable authentication threshold. We can see that Thumprint 
worked well: at a threshold between [0.5, 0.75), we 
achieved 100% true positives and no false positives.  

This result is promising—suggesting that thumprints might 
provide reasonable outsider rejection while maintaining 
high insider acceptance. However, it is worth keeping in 
mind that our adversaries in this evaluation were not 
specifically trying to replicate a thumprint in a way that 
they observed someone else. Furthermore, we collected all 
data within a single session, so it is not surprising that 
people’s testing attempts were quite similar to their training 
attempts. We address these weaknesses in our second study.  

STUDY 2: CONSISTENCY AND SECURITY EVALUATION 
We ran a second lab study, with 15 new participants, 
ranging in age from 18-57 years old (mean age 28, five 
females). Our goal with this study was to answer the 
following two questions: (iv) can people consistently enter 
complex thumprints after time-separated sessions? And (v) 
how well can thumprint reject motivated adversaries? 

Procedure  
This study consisted of two 30-minute sessions that took 
place 24 hours apart. Broadly, we had participants register a 
thumprint in the first session and re-enter the same 
thumprint a day later. In addition, we had participants play 
the role of an adversary attempting to break into others’ 
thumprints, given a set of capabilities and constraints. 

Session 1: Participants initially had to enter four simple, 
pre-defined thumprints to familiarize themselves with the 
application interface. This flow was the same as it was in 
the first study, where participants selected from a set of 
provided objects and tapped them repeatedly on the center 

     
Figure 5. Photo of a participant entering 
a unique thumprint on our data collec-
tion app. Participants had to create four 
unique thumprints and repeat them 10 
times each. The interface provided a 
three-second countdown timer to assist. 

Figure 6. Mean feature vector differ-
ence (along with 95% confidence 
intervals) for user testing attempts 
(relative to their own training data 
and other group member training 
data), as well as outsider attempts. 

Figure 7. Acceptance rate as a function 
of feature vector difference. The black 
vertical line is where 100% of user 
attempts are accepted, and the blue 
dashed line is where >0% of outsider 
attempts are first accepted. 

 



of the screen. Once they had completed the pre-defined 
thumprint flow, they were shown a video of a custom 
thumprint created by a participant from the second flow in 
first study. Participants were allowed to watch the video as 
often as they liked. Once satisfied, they were instructed to 
replicate what they saw to the best of their ability. Partici-
pants were also told that they would have to re-enter this 
thumprint the next day.  

Of note, participants were shown one of three custom 
thumprints corresponding to the study group to which they 
were assigned. We selected three groups because we 
wanted several participants to learn the same thumprint so 
that we could later group them, and to ensure that our 
results were not tied to any single thumprint.  

Session 2: Participants came back for a follow-up session a 
day later. Their first task in this follow-up session was to re-
enter the custom thumprint they had seen at the end of the 
previous day’s session. They had to do so from memory—
no assistance was provided. Once completed, each partici-
pant had to enter four more custom thumprints. This time, 
however, we had participants play the role of adversary. 
Their task was to replicate other thumprints given a set of 
constraints to simulate different adversary models.  

The four adversary models and their corresponding af-
fordances were: (1) video+correct token: the full video 
recording of thumprint entry and use of the correct token; 
(2) video+wrong token: the full video recording of 
thumprint entry, but the correct token could not be used; (3) 
sound only: the audio recording of thumprint being entered 
(stripped from the video recording) and a best-guess at-
tempt at picking the correct token; and, (4) token only: only 
knowledge of the correct token provided. Table 2 shows all 
of the thumprints each participant had to enter, along with 
the relevant constraints. Note that, as before, participants 
entered 10 repetitions for each thumprint.  

At the end of the study, we had data for three thumprints 
(T1, T2, and T3) across two sessions from five participants 
each. For each of these thumprints, we also had 10 vid-
eo+wrong, token only and sound only adversarial replica-
tions. For another set of three thumprints (T4, T5, T6), we 
had 10 video+correct adversarial replications. Notably, as 
video+correct adversaries can be considered authentic 
group members (if their data is included in the process of 
training Thumprint), we can divide the 10 video+correct 
replications into subsets of group members and adversaries 
as necessary.  

Consistency and Security Evaluation  
To answer the question (iv), can people remember and enter 
complex thumprints over time, we trained a model on data 
collected for T1, T2, and T3 from the first day’s session and 
tested it on data collected for those same thumprints col-
lected in the second day’s session. Specifically, we calcu-
lated the minimum feature vector difference of the authenti-
cation attempts from the second session relative to data 

from the same user in the first session. As a point of refer-
ence, we also calculated the minimum feature vector 
difference of the 10 video+wrong, sound only, and token 
only adversarial attempts relative to group member training 
data from the first session. To see if group members could 
be misidentified with each other, we also calculated the 
minimum feature vector difference between user authenti-
cation attempts and the training data for other group mem-
bers. Figure 8 shows the results.  

We can see that mean feature vector difference for all 
authentication attempts by participants as compared to their 
own training data (d=0.38) from a previous session is much 
lower than the three adversary models (ds=0.70, 0.74, 0.70), 
as well as those of the wrong group members (d=0.76). In 
fact, participants are not much more inconsistent across 
time-separated sessions than they are within the same 

Part. T1 T2 T3 T4 T5 T6 
1 Main S V V+T  V+T 
2 Main V T V+T  V+T 
3 Main T S V+T  V+T 
4 Main S V V+T  V+T 
5 Main V T V+T  V+T 
6 S Main T V+T V+T  
7 V Main S V+T V+T  
8 T Main V V+T V+T  
9 S Main T V+T V+T  
10 V Main S V+T V+T  
11 V T Main  V+T V+T 
12 T S Main  V+T V+T 
13 S V Main  V+T V+T 
14 V T Main  V+T V+T 
15 T S Main  V+T V+T 
Main: Group thumprint; V: video+wrong token; S: sound only;  

T: token only; V+T: video+correct token. 

Table 2. Study 2 flow for each participant. The columns 
represent the six thumprints selected from Study 1. Cell 
values with “main” refer to thumprints participants 
learned in session 1 and replicated in session 2. Other cell 
values refer to thumprints replicated as adversaries.  

 

Figure 8. Mean feature vector difference (along with 
95% confidence intervals) for T1-T3 across authentic 
and adversarial attempts. User testing data was collected 
one day after the training data.  



session (d=0.32 in Study 1). This marked difference be-
tween authentic user and adversarial attempts lends support 
to the conjecture that users can effectively replicate 
thumprints over time and cannot easily be impersonated by 
casual but motivated adversaries. 

To definitively answer question (v), we next sought to 
translate our findings into individual authentication deci-
sions. In addition to the models for T1-T3 that we used in 
the previous analysis, we also included models for T4-T6. 
Specifically, for each of T4, T5 and T6, we selected five 
participants to be “group members” and five participants to 
be video+correct token adversaries. We trained a model on 
80% of the available data for the group members, holding 
out the additional 20% for testing.  

Figure 9 shows a plot of acceptance rates for correctly 
identified group members (“correct member”), all four 
adversary types (video+wrong, sound only, token only and 
video+correct), as well as how often a user would be 
authenticated but misidentified as another member of the 
group (the “wrong member” trend line).  

Expectedly, these results are not as optimistic as the analy-
sis from our first study, when all data was collected from a 
single session and when the adversaries were not explicitly 
trying to exactly replicate the thumprint expression of a 
specific group member. One immediately notable result is 
that group members are rarely misidentified—this makes 
sense, as our preprocessing pipeline during training uses 
differences between group members to learn individual 
expressions of the thumprint.  

However, adversaries can have some success at cracking 
thumprints, particularly at higher thresholds. A good 
compromise between false positives and false negatives 
appears to occur in between the threshold values of 0.45 
and 0.5. In between those thresholds, authentic user at-
tempts are correctly let in between 85 and 91% of the time, 
while adversaries are granted acceptance between an 
average of 13% and 19% of the time. While these adversar-

ial success rates seem high, they are comparable to other 
intentional behavioral approaches, such as TapSongs 
(83.2% user recognition, 19.4% adversarial acceptance) 
[36] and keystroke dynamics for user identification (83-
92% recognition) [27].  

Interestingly, what we believed was our “weakest” adver-
sary model, the token only model, was most successful at 
cracking thumprints. This appears to be because adversaries 
with more information quickly honed in on how they would 
try to replicate the thumprint and simply repeated this 
process for all ten attempts. Token only adversaries, how-
ever, explored a wider space of possibilities with their 10 
replications (i.e., they tried many different knocks as 
opposed to just one knock).  

Finally, it is important to remember that Thumprint is not 
designed to provide perfect security against strong, moti-
vated adversaries (who have advantages such as a video of 
the secret knock and ten unfettered attempts). We designed 
Thumprint to provide reasonable security, but emphasized 
inclusivity with identifiability, equitable distribution of 
responsibility and ease of sharing and revoking access. 
Indeed, for local group resources that are already largely 
physically secure (e.g., in homes), we believe our results 
suggest sufficient security. 

It should also be noted that any probabilistic authenticator 
carries some risk of accidentally authenticating outsiders 
(e.g., even stronger, more sophisticated ones like Apple’s 
TouchID [29]). Indeed, given the similarity in outsider 
rejection performance between our approach, TapSongs 
[36] and RhythmLink [25], this detection rate could be a 
natural limitation of using sensable behavioral interactions 
for authentication—at least using existing sensors and 
modeling techniques. Still, we argue that this level of 
outsider rejection is reasonable for the small, local-group 
setting, especially given our focus on inclusiveness. 

DISCUSSION  
Our evaluations suggest that groups of users who enter the 
same thumprint can reliably be distinguished from one 
another; that users can enter their thumprints fairly consist-
ently over time; and, that casual but motivated adversaries 
are often detectable and can thus be protected against. 
Taken together, these results suggest that Thumprint is a 
promising step towards the vision of socially-inclusive 
authentication for small, local groups. This evidence does 
not, however, suggest that Thumprint is immediately ready 
for mainstream use. 

Though immediate viability is often an objective of tradi-
tional authentication research, we believe that this objective 
can be short-sighted. Traditional authentication works well 
for the purpose of identifying individuals who access 
private accounts, but Thumprint, and any other form of 
socially-inclusive authentication, is a significant departure 
from these models. Indeed, if the goal of traditional authen-
tication is to create hard, impermeable boundaries that 

 
Figure 9. Acceptance rate as a function of minimum ac-
ceptable threshold across all thumprints. There is no 
threshold value to perfectly distinguish authentic attempts 
from adversarial attempts, but threshold values between 
0.4 and 0.5 yield high true positives and low false positives. 

 



differentiate any two individuals, the goal of socially-
inclusive authentication is to construct tweakable, semi-
permeable boundaries between an in and out-group. While 
identifiability within the in-group is important, the process 
of identifying the individual should not raise hard barriers 
between those in the group. 

Accordingly, while we have evaluated Thumprint to the 
standards expected of traditional authentication tools (e.g., 
with formally modeled adversaries), we believe our work 
opens up more interesting lines of inquiry. We reflect on 
some of these open questions and limitations, as well as 
discuss strategies for tackling them in future work. 

Uncovering Hidden Group Authentication Needs 
In designing Thumprint, we synthesized a number of unmet 
group authentication needs through a survey of the existing 
literature. However, these needs have only been explored in 
the socio-technical context of traditional authentication. As 
passwords and other typical forms of authentication have 
been long ingrained into everyday technology use, it may 
be difficult for users to conceptualize forms of authentica-
tion that are more group-friendly. 

Accordingly, in future work, it would be pertinent to deploy 
Thumprint and other forms of socially-inclusive authentica-
tion as design probes in a field study with real groups. 
Through this field study, we may uncover additional 
insights into how local groups use socially-inclusive au-
thenticators and how they can be improved. 

Designing for Group Variety 
While Thumprint was designed to better cater to the authen-
tication needs of local groups, these groups can have 
tremendous variety in their structure, composition and 
broader social context [35]. Families, for example, typically 
have little to no churn and often have clear power struc-
tures. Groups of friends, on the other hand, may be more 
egalitarian and prefer equal access to collectively shared 
resources. Work teams may have a lot of churn, be short 
lived, or require compatibility with broader security infra-
structures. Student organizations may have expensive 
equipment that should be sharable, but require audit logs to 
keep track of who had access to what. 

Many other factors no doubt affect how appropriate solu-
tions like Thumprint are for groups. For example, some 
groups may have greater risk perception than others (e.g., a 
group of journalists). Other groups may be aversive towards 
probabilistic authentication as opposed to deterministic 
authentication. Still other groups may value anonymity and 
want to do away with identifiability, while preserving an 
equitable distribution of security responsibility.  

Thumprint, thus, is likely to better suited to the needs of 
some groups than others – it is not a panacea. Still, we 
believe it is a promising a step forward and could be a 
starting point for further explorations into the design space 
of socially-inclusive authentication for different groups. 

Strength of Security 
Thumprint is not and was not designed to be perfectly 
secure. Though it is about as secure as comparable ap-
proaches for individuals (e.g., TapSongs [36], keystroke 
dynamics [27] and RhythmLink [25]), it is likely that a 
motivated adversary who observes individual group mem-
bers entering the secret knock would be able to fool the 
model. Still, Thumprint’s security may improve as more 
data from multiple time-separated sessions become availa-
ble. As group members continue to use Thumprint for 
extended periods of time, there may be enough training data 
to employ these more sophisticated models (e.g., one-class 
classifiers) for stronger outsider rejection. In future work, 
we would like to explore this possibility. 

CONCLUSION 
In this paper, we designed and evaluated Thumprint, a 
socially-inclusive group authentication mechanism that 
authenticates and identifies group members through their 
expression of a shared secret knock. Specifically, we 
designed Thumprint to quickly and easily authenticate and 
identify individual members of a small group with a single 
shared secret. Through two user studies, we found that 
individuals who enter the same thumprint can be reliably 
distinguished from one another, that people can enter 
thumprints consistently over time, and that Thumprint 
provides reasonable security against a variety of casual, but 
motivated adversaries. In light of these results, we believe 
that Thumprint is a promising step towards the vision of 
socially-inclusive authenticators that better meet the needs 
of small, local groups. 
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